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Abstract
We study the twirling semigroups of (super) operators, namely certain quantum
dynamical semigroups that are associated, in a natural way, with the pairs
formed by a projective representation of a locally compact group and a
convolution semigroup of probability measures on this group. The link
connecting this class of semigroups of operators with (classical) Brownian
motion is clarified. It turns out that every twirling semigroup associated
with a finite-dimensional representation is a random unitary semigroup, and,
conversely, every random unitary semigroup arises as a twirling semigroup.
Using standard tools of the theory of convolution semigroups of measures and
of convex analysis, we provide a complete characterization of the infinitesimal
generator of a twirling semigroup associated with a finite-dimensional unitary
representation of a Lie group.

PACS numbers: 03.65.Yz, 03.65.Ca, 03.65.Aa, 03.67.−a

1. Introduction

The theory of Brownian motion and its several ramifications form an evergreen area of research
in physics and mathematics. The interesting history of this subject would deserve a whole
article per se; hence, we will content ourselves with recalling just a few salient facts related
to our present contribution. The first investigations of Brownian motion on a Lie group—and,
more generally, of probability theory on groups—seem to be due to Perrin [1], who studied
Brownian motion on the rotation group SO(3), and, later, to Lévy [2] who provided the
first theoretical treatment of probability measures on U(1) (also consider the early work of
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von Mises [3] who, studying the atomic weights, introduced a normal distribution on the
torus). These investigations paved the way to an extensive study of probability theory on
locally compact groups (started in the 1940s); see the classical references [4, 5], and the rich
bibliography therein. In particular, fundamental and systematic contributions to the theory of
Brownian motion on Lie groups are due to Ito [6], Yosida [7] and Hunt [8].

In 1966, Nelson showed that there is a remarkable link connecting (classical) Brownian
motion and the Schrödinger equation [9]. Assuming that a particle of mass m is subject to a
Brownian motion with diffusion coefficient h̄/2m (and no friction), and using the well-known
relation between the particle probability density and the quantum–mechanical wavefunction,
he was able to derive (formally) the Schrödinger equation.

A different association of the evolution of a quantum system with Brownian motion was
proposed, later on, by Kossakowski [10]. In the pioneering times of the theory of open
quantum systems [11]—a complete definition of quantum dynamical semigroups and the
Gorini–Kossakowski–Lindblad–Sudarshan classification of the infinitesimal generators [12,
13] has not been established yet—he observed that there is a class of semigroups of (super)
operators—acting in a space of trace-class operators—that are generated, in a natural way, by
the pairs of the type (U, {μt }t∈R+), where U is a representation of a group G and {μt }t∈R+ is
a convolution semigroup of measures on G. In particular, he considered the case where G is
a Lie group and {μt }t∈R+ is what we call nowadays a Gaussian semigroup of measures (see
section 5). This class of convolution semigroups of measures describe the statistical properties
of Brownian motion on G (the natural generalization of the ordinary Brownian motion).

The aim of this paper is to provide a rigorous study of the above-mentioned class of
semigroups of superoperators—that we will call twirling semigroups—without restrictions on
the convolutions semigroups of measures considered. In particular, in the case where G is
a Lie group, we will not assume, in general, to deal with Gaussian semigroups of measures.
We will prove that every twirling semigroup is a quantum dynamical semigroup [14], and, in
the case where G is a Lie group and U is a finite-dimensional unitary representation, we will
provide a complete characterization of the infinitesimal generators of the twirling semigroups
associated with U.

Like many other mathematical objects having a ‘natural’ definition, it turns out that
twirling semigroups arise in the study of various physical contexts. For instance, the analysis
of the infinitesimal generators of the twirling semigroups reveals that this class of semigroups
of superoperators includes, in particular, the semigroups describing the dynamics of a finite-
dimensional system with a purely random Gaussian stochastic Hamiltonian [15], and the
reduced dynamics of a finite-dimensional system in the limit of singular coupling to a reservoir
at infinite temperature [16].

The twirling semigroups associated with the defining representation of the group SU(N)
have been studied by Kümmerer and Maassen [17], with the aim of characterizing the dilations
of dynamical semigroups that are ‘essentially commutative’.

Our interest in twirling semigroups is also motivated by possible applications in the field
of quantum computation and information [18], where, usually, finite-dimensional quantum
systems are considered. In fact, it is well known that a relevant class of ‘quantum channels’
is formed by the so-called random unitary maps, i.e. by those completely positive trace-
preserving maps that can be expressed as convex superpositions of unitary transformations.
Gregoratti and Werner [19] have given a remarkable characterization of this class of maps:
they are the only quantum channels that enjoy the property of being perfectly corrigible by
using, as the only side resource, classical information obtained form the environment. Smolin,
Verstraete and Winter [20] have conjectured that asymptotically many copies of any unital
quantum channel (a quantum bistochastic map [21])—random unitary maps form a subset of
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the set of unital channels—may be arbitrarily well approximated by a random unitary map.
This conjecture, if proved, would be a ‘quantum counterpart’ of the Birkhoff–von Neumann
theorem [22] on bistochastic matrices. Recently, Mendl and Wolf [23] have studied the
relation between the set of unital channels and the subset of random unitary maps, and verified
the conjecture in special cases. Other recent investigations of random unitary maps include
applications to quantum cryptography [24] and quantum state reconstruction [25].

It is therefore an interesting and natural issue to characterize the random unitary
semigroups, i.e. the quantum dynamical semigroups consisting of random unitary maps.
But it turns out that—in the case of a finite-dimensional quantum system—there is a precise
relation between random unitary semigroups and twirling semigroups: indeed, every twirling
semigroup is a random unitary semigroup—see section 5—and, conversely, it can be shown
that every random unitary semigroup arises as a twirling semigroup. Thus, it is likely that our
results—in addition to their intrinsic theoretical interest—may find useful applications in the
context of quantum information.

The paper is organized as follows. In section 2, for the reader’s convenience, we will recall
some mathematical facts that are fundamental in the rest of this paper, and we will set the main
definitions and notations. Some further notations will be introduced later on, closer to the place
where they are used. In section 3, we will briefly discuss the group-theoretical framework
underlying the description of the statistical properties of ‘standard’ Brownian motion. This
should help the reader to achieve a clearer understanding of the general framework. In section 4,
the main object of our investigation—the twirling semigroups—will be introduced, where the
basic properties of these semigroups of superoperators will be studied. In section 5, we will
focus on the case of twirling semigroups associated with finite-dimensional representations
of Lie groups. As already mentioned, this case is relevant for applications to quantum
information. Eventually, in section 6, a few conclusions will be drawn.

2. Definitions, basic known facts and notations

In this section, we fix the main notations, and recall some basic definitions and results that will
be useful in the rest of this paper. We will be rather concise and, for further details, we invite
the reader to consult the standard references [26] (functional analysis and basics in probability
theory), [27, 28] (semigroups of operators), [29, 30] (Lie groups, representation theory) and
[4, 5] (probability theory on groups).

Let X be a separable real or complex Banach space. Denoting by R
+ the set of non-

negative real numbers (the set of strictly positive real numbers will be denoted by R
+
∗), a

family {Ct }t∈R+ of bounded linear operators in X is said to be a (one-parameter) semigroup of
operators if the following conditions are satisfied:

(i) CtCs = Ct+s , ∀ t, s � 0 (one-parameter semigroup property);

(ii) C0 = I ;

(iii) limt↓0 ‖Ct ζ − ζ‖ = 0, ∀ ζ ∈ X, i.e. s - limt↓0 Ct = I (strong right continuity at t = 0).

Here and throughout the paper, I is the identity operator. According to a classical result—see
[27]—the previous conditions imply that the map R

+ � t �→ Ct ∈ X is strongly continuous.
Moreover [28], the last condition is equivalent to the assumption that w- limt↓0 Ct = I (weak
limit). A semigroup of operators {Ct }t∈R+ is said to be a contraction semigroup if, in addition
to the previous hypotheses, it satisfies

(iv) ‖Ct‖ � 1, ∀ t > 0.
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A semigroup of operators {Ct }t∈R+ admits a densely defined infinitesimal generator,
namely the closed linear operator A in X defined by

Dom(A) := {
ζ ∈ X : ∃ lim

t↓0
t−1(Ct ζ − ζ )

}
,

Aζ := lim
t↓0

t−1(Ct ζ − ζ ), ∀ ζ ∈ Dom(A).
(2.1)

Let X be a locally compact, second countable, Hausdorff topological space (in short,
l.c.s.c. space). If X is noncompact, the symbol Ẋ will indicate the one-point compactification
of X. We will denote by C0(X) the Banach space of all continuous R-valued functions on X
vanishing at infinity (hence, bounded), endowed with the ‘sup-norm’:

‖f ‖sup := sup
x∈X

|f (x)|, f ∈ C0(X). (2.2)

As is well known, C0(X) is the closure, with respect to the sup-norm, of the vector space Cc(X)

of all continuous R-valued functions on X with compact support. If X is noncompact, the
vector space C0(X) can be immersed in a natural way in C(Ẋ), the Banach space of continuous
real-valued functions on Ẋ (endowed with the sup-norm) — i.e. setting f (∞) = 0, for all
f ∈ C0(X)—and every function in C(Ẋ) can be expressed as the sum of a function in C0(X)

and a constant function.
We will call a contraction semigroup {Ct }t∈R+ in the Banach space C0(X) a Markovian

semigroup if it satisfies the conditions

C0(X) � f � 0 ⇒ Ct f � 0, ∀ t > 0, (2.3)

(hence, Ct f1 � Ct f2 for f1 � f2)—thus, for each x ∈ X, the map Ft;x : C0(X) � f �→
(Ct f )(x) must be a (bounded) positive functional, with ‖Ft;x‖ � ‖Ct‖ � 1—and

sup
f ∈C0(X),0�f �1

(
Ct f

)
(x) = 1, ∀ x ∈ X, ∀ t > 0, (2.4)

i.e. ‖Ft;x‖ � 1; hence ‖Ft;x‖ = 1. Clearly, condition (2.4) implies that the contraction
semigroup {Ct }t∈R+ is such that ‖Ct‖ = 1, for all t � 0. Moreover, by the Riesz representation
theorem there exists a unique family {pt;x : t ∈ R

+, x ∈ X} of (regular)4 probability measures
on X such that

(Ct f )(x) = Ft;xf =
∫

X

f (y) dpt;x(y), ∀ f ∈ C0(X), ∀ x ∈ X, ∀ t � 0.

(2.5)

Assume, in particular, that the topological space X is compact. Then, 1 ∈ C0(X)

(= C(X)), and 1 = ‖Ft;x‖ = Ft;x1, for all x ∈ X and t � 0. Therefore, in this case,
condition (2.4) can be replaced by the following:

Ct1 = 1, ∀ t > 0. (2.6)

We will denote by C2
c(R

n) the vector space of all R-valued functions on R
n, ‘of class C2’,

with compact support. The completion of this vector space, with respect to the norm

‖f ‖ := ‖f ‖sup +
n∑

j=1

∥∥∥∥ ∂

∂xj
f

∥∥∥∥
sup

+
n∑

j,k=1

∥∥∥∥ ∂2

∂xjxk
f

∥∥∥∥
sup

, (2.7)

is a real Banach space C2
0(R

n) (it is clear that C2
0(R

n) ⊂ C0(R
n)). Moreover, we will denote

by C2(Ṙ
n
) the completion with respect to the norm ‖·‖ of the real vector space consisting

of all linear superpositions of functions in the vector space C2
c(R

n) and constant functions on

4 Recall that in a l.c.s.c. space every finite Borel measure is regular.
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R
n; i.e. C2(Ṙ

n
) is the direct sum of C2

0(R
n) and the one-dimensional vector space of constant

real-valued functions on R
n.

Complexifications of some of the real vector spaces of functions introduced above will
also be considered. For instance, we will consider the complexification Cc(X; C) of the real
vector space Cc(X) ≡ Cc(X; R). The notations adopted will be consistent with this example.

Let G be a locally compact, second countable, Hausdorff topological group (in short,
l.c.s.c. group). The symbol e will denote the identity in G, and G∗ the set G\{e}.

By the term projective representation of G we mean a Borel projective representation of
G in a separable complex Hilbert space H (see, for instance, [30], chapter VII), namely a map
U of G into U(H)—the unitary group of H (the group of all unitary operators in H)—such
that

• U is a weakly Borel map, i.e. G � g �→ 〈φ,U(g)ψ〉 ∈ C is a Borel function, for any pair
of vectors φ,ψ ∈ H;

• U(e) = I ;
• denoting by T the circle group, namely the group of complex numbers of modulus one,

there exists a Borel function m : G × G → T such that

U(gh) = m(g, h)U(g)U(h), ∀ g, h ∈ G. (2.8)

The function m is called the multiplier associated with U (multipliers, however, will play
no relevant role in our later discussion). Clearly, in the case where m ≡ 1, U is a standard
unitary representation; in this case, according to a well-known result, the hypothesis that the
map U is weakly Borel implies that it is, actually, strongly continuous.

We will denote by M1(G) the semigroup—with respect to convolution of measures5—of
all (regular) probability measures on G, endowed with the weak topology (which, in M1(G),
coincides with the vague topology). The symbol δ ≡ δe will denote the Dirac measure
at e, measure that is, of course, the identity in the semigroup M1(G). By a continuous
convolution semigroup of measures on G we mean a subset {μt }t∈R+ of M1(G) such that the
map R

+ � t �→ μt ∈ M1(G) is a homomorphism of semigroups and

lim
t↓0

μt = δ. (2.9)

It is a well-known fact that this condition implies that the homomorphism t �→ μt is continuous.
Let μ be a probability measure in M1(G). The probability operator associated with μ is a
bounded linear operator Pμ : C0(G) → C0(G) defined by

(Pμf )(g) :=
∫

G

f (gh) dμ(h) =
∫

G

f (h) dμg(h), ∀ f ∈ C0(G), (2.10)

where the probability measure μg is the g-translate of the measure μ. The probability operator
Pμ is left invariant, i.e.

Pμ�g = �gPμ, ∀ g ∈ G, (2.11)

where �g : C0(G) → C0(G) is the isometry defined by �gf := f (g(·)), and ‖Pμ‖ = 1
(by one of the assertions of the Riesz representation theorem). Note, moreover, that the
correspondence between probability measures and probability operators is one-to-one.

A convolution semigroup of measures on G generates, in a natural way, a contraction
semigroup. Precisely, let {μt }t∈R+ be a continuous convolution semigroup of measures on G.
Then, setting

Pt := Pμt
, t � 0, (P0 = I ), (2.12)

5 Recall that for μ, ν ∈ M1(G) the convolution of μ with ν is the measure μ 	 ν ∈ M1(G) determined by∫
G

dμ 	 ν(g) f (g) = ∫
G

dμ(g)
∫
G

dν(h) f (gh) for all f ∈ Cc(G).

5
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we get a contraction semigroup {Pt }t∈R+ —precisely, a Markovian semigroup—in the Banach
space C0(G), which is left invariant: Pt �g = �gPt , for all g ∈ G and t ∈ R

+. A semigroup
of operators of the type (2.12) will be called a probability semigroup on G. Actually, it turns
out that definition (2.12) establishes a one-to-one correspondence between the left-invariant
Markovian semigroups in C0(G) and the continuous convolution semigroups of measures on
G (or the associated probability semigroups).

Now let G be, in particular, a Lie group of dimension n � 1. We will denote by BC∞(G),
C∞

c (G) the vector spaces of all bounded smooth real-valued functions on G and of all smooth
real-valued functions on G with compact support, respectively. For every basis {ξ1, . . . , ξn} in
the Lie algebra Lie(G) (realized as the space of left-invariant vector fields) of G, there exists
a relatively compact neighborhood Ee of the identity in G and a local chart

(Ee; Ee � g �→ x1(g), . . . , Ee � g �→ xn(g)), (2.13)

such that expG

( ∑n
k=1 xk(g)ξk

) = g, for all g ∈ Ee. Such a local chart is called a system of
canonical coordinates (of the first kind) associated with the basis {ξ1, . . . , ξn}. The local maps
g �→ x1(g), . . . , g �→ xn(g) defined in Ee can be extended to suitable real functions

G � g �→ x̄1(g) ∈ R, . . . ,G � g �→ x̄n(g) ∈ R, (2.14)

belonging to C∞
c (G). We will call such a set of real functions a system of adapted coordinates

(based at the identity e) for the Lie group G.
Let U be a smooth unitary representation6 of the Lie group G in a finite-dimensional

Hilbert space H. Then, there is a unique representation πU of the Lie algebra Lie(G) in H
determined by

U(expG(ξ)) = eπU (ξ), ∀ ξ ∈ Lie(G). (2.15)

It is clear that πU(Lie(G)) ⊂ iBR(H), with iBR(H) denoting the finite-dimensional real
vector space consisting of all skew-adjoint operators in H (accordingly, the real vector space
of self-adjoint operators inHwill be denoted byBR(H)). We will adopt the following notation:

X̂1 ≡ πU(ξ1), . . . , X̂n ≡ πU(ξn). (2.16)

Observe that the map G � g �→ eπU (x̄1(g) ξ1+···+x̄n(g) ξn) ∈ B(H) is a smooth function such that

U(g) = eπU (x̄1(g) ξ1+···+x̄n(g) ξn) = ex̄1(g)X̂1+···+x̄n(g)X̂n , ∀ g ∈ Ee. (2.17)

We will now recall a classical result about left-invariant Markovian semigroups
(probability semigroups) [4, 5]. Let � ≡ {ξ1, . . . , ξn} be a basis in Lie(G). A Hunt function
associated with � is a real-valued function on G that verifies the following conditions: it is a
function  contained in BC∞(G), with 0 <  � 1, such that

(g) =
n∑

j=1

xj (g)2, ∀ g ∈ Ee and (g) = 1, ∀ g ∈ �Ke, (2.18)

where Ee is a relatively compact neighborhood of e, (Ee; Ee � g �→ x1(g), . . . ,

Ee � g �→ xn(g)) a system of canonical coordinates (extendable to adapted coordinates
denoted as in (2.14)) associated with the basis � and Ke a compact neighborhood of the
identity. A Lévy measure η is a Radon measure on G∗ satisfying∫

G∗
(g) dη(g) < ∞, (2.19)

6 As is well known, a continuous homomorphism between Lie groups is necessarily smooth. Therefore, it would be
enough to assume continuity in order to ensure smoothness.
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for any Hunt function . Let us denote by I the infinitesimal generator of a probability
semigroup {Pt }t∈R+ in C0(G). Then, the domain of the operator I contains the vector space
C2

c(G), and there exist real numbers b1, . . . , bn, a positive7, symmetric real matrix [ajk]nj,k=1
and a Lévy measure η on G∗ such that

(If )(g) =
n∑

j=1

bj (ξjf )(g) +
n∑

j,k=1

ajk(ξj ξkf )(g) + (Rf )(g) (2.20)

for all f ∈ C2
c(G), where

(Rf )(g) =
∫

G∗

(
f (gh) − f (g) −

n∑
j=1

(ξjf )(g)x̄j (h)

)
dη(h). (2.21)

This result is the celebrated Lévy–Kintchine formula. If {μt }t∈R+ is the continuous convolution
semigroup of measures that generates the probability semigroup {Pt }t∈R+ , then the Lévy
measure η is uniquely determined by the condition∫

G∗
f (g) dη(g) = lim

t↓0
t−1

∫
G

f (g) dμt(g), ∀ f ∈ Cc(G∗), (f (e) ≡ 0). (2.22)

Conversely—given real numbers b1, . . . , bn, a positive, symmetric real matrix [ajk]nj,k=1
and a Lévy measure η on G∗—one can prove that there is a probability semigroup {Pt }t∈R+

whose infinitesimal generator satisfies the Lévy–Kintchine formula (2.20). Therefore, it is
natural to call a set {bj , ajk, η}nj,k=1 ≡ {b1, . . . , bn; [ajk]nj,k=1; η} of the type just described
as a representation kit (this term is non-standard) of the probability semigroup {Pt }t∈R+ ;
or—due to the one-to-one correspondence between the continuous convolution semigroups
of measures and probability semigroups—a representation kit of the convolution semigroup
{μt }t∈R+ (generating {Pt }t∈R+ ).

Remark 2.1. Since the Lévy–Kintchine formula (2.20) has been written for functions
in C2

c(G)—that is perfectly fit for our purposes—we can use the standard Lie derivatives
ξ1, . . . , ξn of functions on G instead of the ‘uniform derivatives’ (i.e. derivatives converging
in the sup-norm, defined on suitable Banach spaces), as it is usually done in more general
contexts [4, 5].

A probability semigroup {Pt }t∈R+ acting in C0(G) ≡ C0(G; R) can be extended, in a
natural way, to C0(G; C) ‘by complexification’ and the infinitesimal generator of this extended
semigroup is the complexification of the generator I of {Pt }t∈R+ . With a slight abuse, we will
still denote by I the complexified generator, and the Lévy–Kintchine formula (2.20) will be
understood to hold, in general, in Cc(G; C).

It is convenient to classify convolution semigroups of measures on Lie groups according
to the behavior of the associated Lévy measures. We will say that {μt }t∈R+ is of regular type
if the associated Lévy measure η satisfies∫

G∗

n∑
j=1

|x̄j (g)| dη(g) < ∞. (2.23)

This condition does not depend on the choice of the adapted coordinates. Note that, if (2.23)
is verified, we have

(Rf )(g) =
∫

G∗
(f (gh) − f (g)) dη(h) −

n∑
j=1

(ξjf )(g)

∫
G∗

x̄j (h) dη(h). (2.24)

7 In the following, by positive we will always mean positive semidefinite.
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We will, moreover, single out a special class of convolution semigroups of the measures of
regular type. We will say that the convolution semigroup of measures {μt }t∈R+ is of the first
kind if the associated Lévy measure η on G∗ is finite (hence, satisfies (2.23)). Otherwise, we
will say that it is a convolution semigroup of measures of second kind. Clearly, the convolution
semigroups of measures of the second kind that are of nonregular type are characterized by
Lévy measures satisfying (2.19) but not the more stringent condition (2.23).

Let A be a C∗-algebra. We recall that a bounded linear map  : A → A is said to
be completely positive if the map  ⊗ IM : H ⊗ C

M → H ⊗ C
M—with IM denoting the

identity operator in C
M—is positive for any M ∈ N. As is well known, in the case where

A = B(H)—the C∗-algebra of all bounded linear maps in a separable complex Hilbert space
H—and dim(H) = N < ∞,  is completely positive if and only if it is N-positive, i.e.  ⊗ IN
is positive. It is also known (see, e.g., [31]) that the map  is N-positive if and only if, for
every N-tuple {ψ1, . . . , ψN} in H and every N-tuple {Â1, . . . , ÂN} in B(H),

N∑
j,k=1

〈ψj ,(Â∗
j Âk)ψk〉 � 0. (2.25)

3. The Brownian motion on R
n

The aim of this section is to recall that the statistical properties of ‘standard’ Brownian
motion—i.e. the Brownian motion on the Euclidean space R

n—can be expressed, in a natural
way, in the language of convolution semigroups of probability measures (technically, the
distributions associated with the Wiener processes that are the mathematical formalization of
Brownian motion [32]) and of the associated Markovian semigroups. In this case (G = R

n), it
will be instructive to consider a slightly more general mathematical context with respect to the
one considered in section 2 for introducing the Lévy–Kintchine formula (2.20). This will help
the reader, in particular, to appreciate the role of the invariance with respect to translations in
our discussion. We will essentially follow the approach of Nelson’s classical book [33].

As is well known—see [34]—the evolution of the probability distribution of the position
of a Brownian particle (in R

n, n � 1), suspended in a viscous, infinitely extended fluid, can be
regarded as the diffusion through the fluid of a unit mass initially concentrated at a point, let
us say the origin of R

n. If the relevant properties of the fluid are assumed to be invariant with
respect to translations and the external forces acting on the Brownian particle are constant
(with respect to space and time)—a constant force field that causes a constant (average) drift
velocity of a particle in the fluid [35]—then by translating in R

n any solution of the equations
governing the diffusion process one must obtain another solution.

Let us mathematically formalize the diffusion process described above. We will start by
considering the simplest case: a single degree of freedom and no drift. Let us consider, then,
a family of probability measures {μt }t∈R+∗ on R such that

μt 	 μs = μt+s , t, s ∈ R
+
∗, (3.1)

where we recall that μt 	μs is the convolution of the measure μt with the measure μs . Suppose
that for all ε > 0,

μt({y : |y| � ε}) = o(t), t ↓ 0. (3.2)

Note that this assumption implies, in particular, that

lim
t↓0

μt = δ (weakly). (3.3)

8
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Hence—setting μ0 = δ—{μt }t∈R+ is a continuous convolution semigroup of measures on R.
Suppose, moreover, that the measure μt is invariant with respect to the transformation x �→ −x

(⇔ no drift). Then, it follows that either μt = δ, for all t ∈ R
+—there is no diffusion—or,

for t > 0, μt is absolutely continuous with respect to the Lebesgue measure on R and

dμt(y) = ℘t(y) dy = 1√
4πDt

e−(y2/4Dt) dy, t > 0, (3.4)

for some D > 0 (diffusion constant). Thus, the Radon–Nikodým derivative ℘t of the measure
μt with respect to the Lebesgue measure satisfies the diffusion equation

∂

∂t
℘t (y) = D

∂2

∂y2
℘t(y), t > 0; (3.5)

precisely, it is the fundamental solution of this equation. The translation-invariant semigroup
(probability semigroup) {Pt }t∈R+ associated with the semigroup of probability measures
{μt }t∈R+ is given by

(Pt f )(x) :=
∫

R

f (x + y) dμt(y) =
∫

R

f (y)℘t (y − x) dy, (3.6)

f ∈ C0(R), t > 0, (P0 = I ). (3.6)

Clearly, for f � 0 and t > 0, Pt f can be interpreted as the (expected) concentration, at
time t, of a suspension of Brownian particles with initial (t = 0) concentration f . Note that
one can extend, in a natural way, the domain of the operators in the semigroup {Pt }t∈R+ to
include linear superpositions with the constant functions in such a way to obtain a Markovian
semigroup in the Banach space C(Ṙ

n
) (Ṙ

n = R
n ∪∞). Obviously, this Markovian semigroup

commutes with translations.
Keeping in mind the ‘elementary case’ briefly sketched above, let us now consider a more

general setting. We will focus on the implications of an assumption of type (3.2), without
assuming, at first, invariance with respect to translations. Then, let {Ct }t∈R+ be a Markovian
semigroup in the Banach space C(Ṙ

n
), and let A be the associated infinitesimal generator.

Suppose that

Dom(A) ⊃ C2
c(R

n) (3.7)

(a technical condition), and, for all x ∈ R
n and all ε > 0,

pt;x
({y ∈ R

n : |y − x| � ε}) = o(t), t ↓ 0, (3.8)

where {pt;x : t ∈ R
+, x ∈ Ṙ

n} is the family of probability measures determined by (2.5), with
X = Ṙ

n
. Then, one can prove that there are continuous real-valued functions ajk and bj on R

n,
j, k = 1, . . . , n, such that

(Af )(x) =
n∑

j=1

bj (x)
∂

∂xj
f (x) +

n∑
j,k=1

ajk(x)
∂2

∂xj∂xk
f (x), ∀ f ∈ C2

c(R
n), ∀ x ∈ R

n.

(3.9)

Moreover, for each x ∈ R
n, the matrix [ajk(x)]nj,k=1 is positive, i.e.

n∑
j,k=1

ajk(x)z∗
j zk � 0, ∀ z1, . . . , zn ∈ C. (3.10)

As the matrix [ajk(x)]nj,k=1 may be singular, the operator A is not necessarily elliptic. It is
clear that, in the case where the Markovian semigroup {Ct }t∈R+ commutes with translations,
i.e.

(Ct f )(x + (·)) = Ct (f (x + (·))), f ∈ C(Ṙ
n
), x ∈ R

n, (x + ∞ ≡ ∞), (3.11)

9
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we have that, for every x ∈ R
n,

(Ct f )(x) =
∫

Ṙ
n
f (y) dpt;x(y) =

∫
Ṙ

n
f (x + y) dpt (y), pt ≡ pt;0. (3.12)

Hence, the probability measure pt;x is the x-translate of pt . It is also clear that, in this case, in
formula (3.9) the functions ajk and bj, j, k = 1, . . . , n, must be constant.

Let now {Ct }t∈R+ be a Markovian semigroup in the Banach space C(Ṙ
n
) that commutes

with translations. It can be shown that the infinitesimal generator A of such a semigroup
verifies

Dom(A) ⊃ C2(Ṙ
n
). (3.13)

Therefore, in this case, condition (3.7) is automatically satisfied. If, in addition, for all ε > 0,
pt ({y : |y| � ε}) = o(t) (pt ≡ pt;0), for t ↓ 0, then condition (3.8) is satisfied too (as pt;x
is the x-translate of pt ), and equation (3.9) holds, in this case with the real-valued functions
ajk and bj, j, k = 1, . . . , n, that are actually constant (and the matrix [ajk]nj,k=1 positive). We
stress that, in the present paper, we are interested in the case where pt (∞) = 0, for all t > 0
(‘no masses escaping to infinity’).

Let {Pt }t∈R+ be a translation-invariant Markovian semigroup in C0(R
n), and let {μt }t∈R+

be the continuous convolution semigroup of measures that generates this semigroup. Then,
extending the measure μt to a probability measure pt on Ṙ

n
(pt (∞) = 0), one can define a

Markovian semigroup {Ct }t∈R+ in C(Ṙ
n
) that commutes with translations:

(Ct f )(x) :=
∫

Ṙ
n
f (x + y) dpt (y), f ∈ C(Ṙ

n
). (3.14)

Assume, moreover, that {μt }t∈R+ satisfies (3.2), so that condition (3.8) is satisfied for the
semigroup {Ct }t∈R+ (as well as condition (3.7)). C0(R

n) being an invariant subspace for the
Markovian semigroup {Ct }t∈R+ , we can define the linear operator I : C0(R

n) ∩ Dom(A) �
f �→ Af ∈ C0(R

n), which is precisely the infinitesimal generator of {Pt }t∈R+ . Thus, from
our previous discussion it follows that

(If )(x) =
n∑

j=1

bj ∂

∂xj
f (x) +

n∑
j,k=1

ajk ∂2

∂xj∂xk
f (x), ∀ f ∈ C2

c(R
n), (3.15)

for some real constants b1, . . . , bn and a positive matrix [ajk]nj,k=1. It can be shown, moreover,
that I is uniquely determined by (3.15). Clearly, the Lévy–Kintchine formula outlined in
section 2 applies to the translation-invariant Markovian semigroup {Pt }t∈R+ (with G = R

n,
of course), and the hypothesis that for all ε > 0, pt ({y : |y| � ε}) = o(t), for t ↓ 0, implies
that the Lévy measure η appearing in (2.21) is identically zero (as a consequence of relation
(2.22)). Therefore, formula (3.15) is coherent with the Lévy–Kintchine formula (2.20) (with
R ≡ 0).

Finally, what we have recalled about the one-dimensional Brownian motion is easily
recovered as a particular case. Let {Pt }t∈R+ be a translation-invariant Markovian semigroup
in C0(R) such that the associated convolution semigroup of measures {μt }t∈R+ satisfies (3.2).
Then, its infinitesimal generator I is uniquely determined by

(If )(x) = b
∂

∂x
f (x) + a

∂2

∂x2
f (x), ∀ f ∈ C2

c(R), (3.16)

for some a, b ∈ R, a � 0. If a > 0, for every f ∈ C(Ṙ), we have that

(Pt f )(x) =
∫

R

f (y)℘t (y − x) dy, t > 0, (3.17)

10
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where ℘(·)(·) : R
+
∗ × R → R is the well-known fundamental solution of the drift-diffusion

equation8

∂

∂t
℘t (y) = −b

∂

∂y
℘t(y) + a

∂2

∂y2
℘t(y), t > 0, a > 0, b ∈ R. (3.18)

On the other hand, for a = 0 we have a ‘pure drift regime’ and μt = δbt (i.e. |b| is the
modulus of the drift velocity). Suppose, now, that the semigroup {Pt }t∈R+ commutes with
the reflection x �→ −x as well. Then, it follows that b = 0. Moreover, if a > 0 (standard
Brownian regime), the probability measure μt , for t > 0, is absolutely continuous with respect
to the Lebesgue measure on R and the Radon–Nikodým derivative ℘t of μt with respect to
this measure satisfies the diffusion equation (3.5), with D = a. Otherwise (a = 0), A = 0
and μt = δ, for all t ∈ R

+.

4. Twirling superoperators and twirling semigroups

In sections 2 and 3, we have recalled the notion of left-invariant Markovian semigroup of
operators in the Banach space C0(G), with G denoting a l.c.s.c. group, and we have illustrated
this notion in the remarkable case where G = R

n. In this section, we consider a class of
semigroups of operators that is the central object of this paper. More precisely, we deal with
semigroups of ‘superoperators’ acting in Banach spaces of operators. The most evident link
between the two mentioned classes of operator semigroups is given by the fact that both are
defined by means of convolution semigroups of probability measures on groups.

For the sake of clarity, we will establish the following notation. Given a (separable
complex) Hilbert space H, we will denote by B̂ a generic linear operator belonging to the
Banach space B(H) of bounded operators in H. The symbols Â, Ŝ will denote generic
operators in B1(H)—the Banach space of trace-class operators, endowed with the trace norm
‖·‖tr—and in the Hilbert–Schmidt space B2(H) (endowed with the norm ‖·‖HS induced by
the Hilbert–Schmidt scalar product), respectively. As is well known, B1(H) and B2(H) are
two-sided ideals in B(H), and B1(H) ⊂ B2(H). The dual space of B1(H) can be identified
with B(H) via the pairing

B(H) × B1(H) � (B̂, Â) �→ tr(B̂Â) ∈ C. (4.1)

We will denote by L(H), L′(H) the Banach spaces of bounded (super) operators in B1(H) and
B(H), respectively.

Let G be a l.c.s.c. group, and let U be a projective representation of G in H. The following
facts will be very useful for our purposes. The map

U ∨ U : G → U(B2(H)) (4.2)

—where U(B2(H)) is the unitary group of the Hilbert space B2(H)—defined by

U ∨ U(g)Ŝ := U(g) Ŝ U(g)∗, ∀ g ∈ G, ∀ Ŝ ∈ B2(H), (4.3)

is a strongly continuous unitary representation, even in the case where the representation U
is genuinely projective, see [36]. Clearly, for every g ∈ G the unitary operator U ∨ U(g)

in B2(H) induces the Banach space isomorphism (a surjective isometry) B1(H) � Â �→
U ∨ U(g)Â ∈ B1(H). Therefore, we can define the isometric representation

U ∨ U : G → L(H), U ∨ U(g)Â := U(g) ÂU(g)∗,

∀ g ∈ G, ∀ Â ∈ B1(H),
(4.4)

8 Namely ℘t (y) = 1√
4πat

exp(−(y − bt)2/4at) for t > 0.
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keeping in mind the fact that U ∨ U(g)Â = U ∨ U(g)Â for all Â ∈ B1(H) and g ∈ G.

Proposition 4.1. The isometric representation U ∨ U of the l.c.s.c. group G in the Banach
space B1(H) is strongly continuous.

Proof. Since G is a second countable (a fortiori, first countable) topological space, it is
sufficient to show that U ∨ U is sequentially continuous. Let {gn}n∈N be a sequence in G
converging to g. Then, for every Â ∈ B1(H), the sequences

{U ∨ U(gn)Â = U ∨ U(gn)Â}n∈N, {(U ∨ U(gn)Â)∗ = U ∨ U(gn)Â
∗}n∈N (4.5)

converge to U ∨ U(g)Â and U ∨ U(g)Â∗, respectively, with respect to the Hilbert–Schmidt
norm (the unitary representation U ∨ U is strongly continuous), hence, with respect to the
strong operator topology in B(H). Applying ‘Grümm’s convergence theorem’ (see [37],
chapter 2), by this fact and by the fact that the representation U ∨ U is isometric, we find out
that the sequence {U ∨ U(gn)Â}n∈N converges to U ∨ U(g)Â with respect to the trace norm,
as well. �

Next, observe that, for every B̂ ∈ B(H), the map G � g �→ U(g)∗B̂ U(g) ∈ B(H) is
weakly continuous (since 〈φ,U(g)∗B̂ U(g)ψ〉 = tr(B̂(U ∨ U(g)|ψ〉〈φ|)), for all φ,ψ ∈ H,
and the representation U ∨ U is strongly continuous). Then, given a finite Borel measure μ

on G, one can consider the bounded linear map DU
μ : B(H) → B(H) defined by

DU
μ B̂ :=

∫
G

dμ(g) U(g)∗B̂ U(g), B̂ ∈ B(H), (4.6)

where on the rhs of (4.6) a weak integral (i.e. an integral converging with respect to the weak
operator topology in B(H)) is understood. In the case where μ is normalized (μ(G) = 1, i.e.
μ is a probability measure), it is obvious that DU

μ I = I and it is easy to check that the linear
map DU

μ is a contraction (i.e. its norm is not larger than one). From this point onward, we will
assume that μ belongs to M1(G).

It is clear that the map DU
μ is positive. One can prove, moreover, that it is completely

positive. In fact, recalling the necessary and sufficient condition (2.25), for every m ∈ N the
positivity of the function M : G → R,

M(g) :=
m∑

j,k=1

〈ψj ,U(g)∗ B̂∗
j B̂k U(g)ψk〉, g ∈ G, (4.7)

for any m-tuple {ψ1, . . . , ψm} in H and any m-tuple {B̂1 , . . . , B̂m} in B(H), implies that
m∑

j,k=1

〈
ψj ,D

U
μ (B̂∗

j B̂k )ψk

〉 =
∫

G

dμ(g) M(g) � 0. (4.8)

One can show that the map DU
μ is the adjoint—with respect to the pairing (4.1)—of the

linear application SU
μ : B1(H) → B1(H) defined by

SU
μ Â :=

∫
G

dμ(g)(U ∨ U(g)Â), Â ∈ B1(H), (4.9)

where, again, a weak integral (weak operator topology in B(H)) is understood. Observe, in
fact, that SU

μ Â is a bounded operator (and Â � 0 ⇒ SU
μ Â � 0); moreover, it is in the trace

class and

tr
(
SU

μ Â
) = tr

(
Â

)
, ∀ Â ∈ B1(H). (4.10)

12
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This last assertion is verified assuming—without loss of generality, since Â ∈ B1(H)

can be expressed as a linear combination of four positive trace-class operators, namely
Â = Â1 − Â2 + i(Â3 − Â4)—that Â is positive, and using the definition of the trace and
the ‘monotone convergence theorem’ for permuting the possibly infinite sum (associated with
the trace) with the integral on G. Next, one can verify that

tr
(
B̂

(
SU

μ Â
)) = tr

((
DU

μ B̂
)
Â

)
, ∀ Â ∈ B1(H), ∀ B̂ ∈ B(H). (4.11)

To this aim, assume—again, without loss of generality—that Â ∈ B1(H) and B̂ ∈ B(H) are
both positive. Then, given an orthonormal basis {ψl}l∈N in H (N ⊂ N), we have

tr
(
B̂

(
SU

μ Â
)) = tr

(
B̂1/2

(
SU

μ Â
)
B̂1/2

)
=

∑
l∈N

∫
G

dμ(g)〈ψl, B̂
1/2 U(g)ÂU(g)∗ B̂1/2ψl〉. (4.12)

At this point, since the integrand function on the rhs of (4.12) is positive, we can apply the
‘monotone convergence theorem’ and permute the (possibly infinite) sum with the integral,
thus getting

tr
(
B̂

(
SU

μ Â
)) =

∫
G

dμ(g) tr(B̂1/2U(g)ÂU(g)∗B̂1/2)

=
∫

G

dμ(g) tr(Â1/2U(g)∗B̂ U(g)Â1/2)

=
∫

G

dμ(g)
∑
l∈N

〈ψl, Â
1/2U(g)∗B̂ U(g)Â1/2ψl〉. (4.13)

Eventually, we can again permute the sum with the integral and obtain relation (4.11). Note
that the first line of (4.13) implies that SU

μ coincides with the weak integral—i.e. the integral
with respect to the weak topology of bounded operators in B1(H)—

∫
G

dμ(g) U ∨ U(g). Also
note that, since DU

μ is a contraction in B(H), SU
μ is a contraction in B1(H); indeed∥∥SU

μ Â
∥∥

tr = sup
{∣∣ tr

(
B̂

(
SU

μ Â
))∣∣ : B̂ ∈ B(H), ‖B̂‖ = 1

}
= sup

{∣∣ tr
((

DU
μ B̂

)
Â

)∣∣ : B̂ ∈ B(H), ‖B̂‖ = 1
}

� ‖Â‖tr sup
{∥∥DU

μ B̂
∥∥ : B̂ ∈ B(H), ‖B̂‖ = 1

}
� ‖Â‖tr (4.14)

for all Â ∈ B1(H).
We can summarize our previous discussion by stating the following result.

Proposition 4.2. For every projective representation U of a l.c.s.c group G in H and for
every probability measure μ on G, the bounded linear map SU

μ : B1(H) → B1(H) defined by
(4.9) is a contraction, and it is positive and trace preserving. Moreover, we have the formula

SU
μ =

∫
G

dμ(g) U ∨ U(g), (4.15)

where the integral holds in the weak sense. The bounded linear map DU
μ : B(H) → B(H)

defined by (4.6) is the adjoint of SU
μ . It is a completely positive map.

Remark 4.1. Suppose that the Hilbert space of the representation U is finite dimensional.
Then, for every probability measure μ on G, SU

μ is a completely positive, trace-preserving
linear map which is also unital, i.e. such that SU

μ I = I . Therefore, it is a bistochastic (or
‘doubly stochastic’) linear map [21]. Clearly, the bistochastic linear maps in L(H) form
a convex set. The determination of the extreme points of this convex set is an interesting

13
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problem [38]. From the physicist’s point of view, these maps are characterized by the property
of leaving the maximally mixed state invariant.

In the case where G is a unitary group (U(n) or SU(n)), μ is the Haar measure on G
(normalized in such a way that μ(G) = 1) and U is the defining representation of G, we have
that SU

μ is the ‘standard’ twirling superoperator (in B(Cn)). Therefore, in a general case,
it is quite natural to extend this terminology and call SU

μ the (U,μ)-twirling superoperator;
the map DU

μ will be called, accordingly, the dual (U,μ)-twirling superoperator. Since any
convex combination of two probability measures on G is again a probability measure, the
following result holds.

Proposition 4.3. For every projective representation U : G → U(H), the subsets{
SU

μ : μ ∈ M1(G)
}
,

{
DU

μ : μ ∈ M1(G)
}

(4.16)

of the Banach spaces L(H) and L′(H), respectively, are convex.

Remark 4.2. It is worth observing that in definition (4.9) of the twirling superoperator one
may replace the weak integral with a Bochner integral (relative to the Banach space B1(H)).

It is also an interesting fact that a probability measure μ on G allows us to define a
bounded linear map ŠU

μ : B2(H) → B2(H) along the scheme already outlined for the maps
DU

μ and SU
μ , i.e.

ŠU
μ Ŝ :=

∫
G

dμ(g)(U ∨ U(g)Ŝ), Ŝ ∈ B2(H), (4.17)

where, once again, one can show that the map ŠU
μ is well defined (with the integral on the rhs

of (4.17) regarded, equivalently, as a weak or as a Bochner integral). Indeed, observe that, for
every Ŝ ∈ B2(H), we have

0 <
∑
l∈N

∫
G

dμ(g)

∫
G

dμ(h) 〈ψl, U(g)Ŝ∗U(g)∗U(h)Ŝ U(h)∗ψl〉

�
∑
l∈N

∫
G

dμ(g)

∫
G

dμ(h) |〈ψl, U(g)Ŝ∗U(g)∗U(h)Ŝ U(h)∗ψl〉|

�
∫

G

dμ(g)

∫
G

dμ(h)
∑
l∈N

|〈ψl, U(g)Ŝ∗U(g)∗U(h)Ŝ U(h)∗ψl〉|

�
∫

G

dμ(g)

∫
G

dμ(h) ‖U(g)Ŝ∗U(g)∗U(h)Ŝ U(h)∗‖tr � ‖Ŝ‖2
HS. (4.18)

The previous argument also shows that ŠU
μ is a contraction. It is clear, moreover, that the map

SU
μ can be regarded as the restriction to the trace-class operators of the map ŠU

μ .

From definition (4.9) it is clear that the map

M1(G) � μ �→ SU
μ ∈ DM(H) (4.19)

is a homomorphism of the semigroup M1(G)—with respect to convolution—into the
semigroup DM(H)—with respect to composition—of (quantum) dynamical maps in B1(H),
namely, of the semigroup consisting of all positive, trace-preserving, bounded linear maps in
B1(H), whose adjoints (acting in the Banach space B(H)) are completely positive [14]. This
observation leads us to consider an interesting class of (continuous) one-parameter semigroups
of superoperators.

14
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Indeed—given a continuous one-parameter convolution semigroup {μt }t∈R+ ⊂ M1(G)

of measures on G and a projective representation U of G in H—for every t � 0, we can as
above define the (U,μt )-twirling superoperator:

St ≡ SU
μt

: B1(H) → B1(H), t � 0, (S0 = I ). (4.20)

The fact that {St }t∈R+ enjoys the one-parameter semigroup property is a consequence of
the fact that {μt }t∈R+ is a convolution semigroup and the map (4.19) is a homomorphism.
Moreover, the semigroup {St }t∈R+ is strongly right continuous at t = 0. This is a consequence
of the continuity of {μt }t∈R+ and of proposition 4.1. Actually, as recalled in section 2, it
suffices to prove the weak right continuity at t = 0 of the semigroup {St }t∈R+ . To this aim,
observe that, for every Â ∈ B1(H) and B̂ ∈ B(H), the function

G � g �→ tr(B̂(U ∨ U(g)Â)) ∈ C (4.21)

is continuous (equivalently, the representation U ∨ U is weakly continuous). Also note that

|tr(B̂(U ∨ U(g)Â)) − tr(B̂Â)| � ‖B̂(U ∨ U(g)Â)‖tr + ‖B̂Â‖tr � 2‖B̂‖‖Â‖tr, (4.22)

for all g ∈ G. Therefore, the function

G � g �→ | tr(B̂(U ∨ U(g)Â)) − tr(B̂Â)| ∈ R (4.23)

is bounded and continuous. At this point, we can exploit the fact that limt↓0 μt = δ (weakly).
By this relation, since

|tr(B̂(St Â)) − tr(B̂Â)| =
∣∣∣∣
∫

G

dμt(g)(tr(B̂(U ∨ U(g)Â)) − tr(B̂Â))

∣∣∣∣
�

∫
G

dμt(g)| tr(B̂(U ∨ U(g)Â)) − tr(B̂Â)|, (4.24)

we conclude that

lim
t↓0

|tr(B̂(St Â)) − tr(B̂Â)| = 0, ∀ Â ∈ B1(H), ∀ B̂ ∈ B(H). (4.25)

This completes the proof of the continuity of the one-parameter semigroup {St }t∈R+ .
At this point, recalling that a quantum dynamical semigroup [14] in B1(H) is a (strongly

continuous) one-parameter semigroup of quantum dynamical maps in B1(H), we can resume
our preceding discussion stating the following result.

Proposition 4.4. The contraction semigroup {St : B1(H) → B1(H)}t∈R+ is a quantum
dynamical semigroup.

Remark 4.3. Recalling remark 4.1, we have that—in the case where the Hilbert space of the
representation U is finite dimensional—the dynamical semigroup {St }t∈R+ is a bistochastic
dynamical semigroup. A complete characterization of the twirling semigroups associated with
finite-dimensional representations of Lie groups will be provided in section 5.

Remark 4.4. The contraction ŠU
μ defined by (4.17) allows us to define, for every continuous

convolution semigroup {μt }t∈R+ of probability measures on G, a contraction semigroup
{Št }t∈R+ in the Hilbert space B2(H), i.e.

Št ≡ ŠU
μt

: B2(H) → B2(H). (4.26)

The fact that w- limt↓0 Št = I can be proved by means of a procedure analogous to that
adopted for the semigroup {St }t∈R+ .

In the following, we will call {St }t∈R+ the twirling semigroup associated with (or induced
by) the pair (U, {μt }t∈R+). We stress that, in general, a twirling semigroup will be induced by
different pairs of the type (projective representation, convolution semigroup of measures).
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5. Brownian motion on Lie groups and open quantum systems

In this section, we will study the twirling semigroups of operators induced by representations
of Lie groups. This is a particularly interesting case because the differential structure of a Lie
group allows us to obtain a characterization of the infinitesimal generators of the associated
twirling semigroups. The main technical tool will be the Lévy–Kintchine formula (2.20). In
order to avoid all mathematical intricacies related to infinite-dimensional Hilbert spaces, we
will consider the case where the group representations involved are finite dimensional, case
which is relevant, for instance, in applications to quantum computation [18]. The general case
will be considered elsewhere.

Thus, in the following we will deal with a smooth, finite-dimensional unitary
representation U of a Lie group G (of dimension n) in a N-dimensional (complex) Hilbert
space H. It is clear that, in this case, B(H) = B1(H) = B2(H) and L(H) = L′(H). Since
all norms in B(H) (or L(H)) induce the same topology (as H is finite dimensional), all
our statements involving topological properties of B(H) (or L(H))—convergence, continuity,
compactness, etc—are to be understood as referred to this topology. We will denote, as
usual, by U(H) the unitary group of H, endowed with the topology inherited from B(H);
it is well known that U(H) is compact with respect to this topology. Let us fix once and
for all a basis {ξ1, . . . , ξn} in the Lie algebra Lie(G) and a system of adapted coordinates
{g �→ x̄1(g), . . . , g �→ x̄n(g)} based at the identity. We will use the notations adopted in
section 2, usually with no further explanation.

Remark 5.1. We will repeatedly use the following fact. Let f : G → L(H) be a bounded
continuous function. Then, for every probability measure μ on G, μ(f ) := ∫

G
f (g) dμ(g)

belongs to the closure of the convex hull co(f (G)) ⊂ L(H). Indeed, observe that G is
(homeomorphic to) a separable metric space. Then, there exists a sequence {μm}m∈N of
finitely supported probability measures on G weakly converging to μ (see [39], chapter 2,
theorem 6.3). Hence, μm(f ) ∈ co(f (G)) and μ(f ) = limm→∞ μm(f ) ∈ co(f (G)).

We have observed in section 4 that a twirling superoperator is a bistochastic linear map,
see remark 4.1. We will now show that, actually, it belongs to a special class of bistochastic
maps, namely the class of ‘random unitary maps’.

Definition 5.1. A quantum dynamical map U : B(H) → B(H) is said to be a random unitary
map if it admits a decomposition of the form

UÂ =
N∑

k=1

pkVk ÂV ∗
k , N ∈ N, (5.1)

where {Vk }Nk=1 is a set of unitary operators inH and {pk}Nk=1 ⊂ R
+
∗ is a probability distribution;

i.e. if it is a convex combination of unitary transformations. The cardinality card(U) of a
random unitary map U is the minimum number of terms required in a decomposition of U of
the type (5.1).

Observe that the random unitary maps acting in B(H) form a semigroup DMru(H)

contained in the semigroup of quantum dynamical maps DM(H). It is natural to consider
the non-zero positive integer c(N) defined as follows:

c(N) := sup{card(U) ∈ N : U ∈ DMru(H)}, N = dim(H). (5.2)

Since a random unitary map sends the subspace, formed by the traceless operators, of the real
vector space BR(H) (of self-adjoint operators in H) into itself, applying Carathéodory theorem
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one finds the estimate c(N) � (N2 − 1)2 + 1 = N4 − 2N2 + 2. This estimate is not tight. For
instance, in the case where N = 2, it is known that all bistochastic maps (hence, all random
unitary maps) are ‘Pauli channels’ [21]; thus, c(2) = 4. To the best of our knowledge, the
generic integer c(N) is unknown, but stricter bounds for the cardinality of a random unitary
map can be provided and it turns out that c(N) � N2 [40].

Consider, now, a subgroup V of the group U(H). The closure V of V is a subgroup of
U(H), as well. Denote by DMru(V) the subset of DMru(H) formed by those superoperators
of the form (5.1) with the set of unitary operators {Vk }Nk=1 contained in V . Clearly,
DMru(H) = DMru(U(H)), and DMru(V) is a subsemigroup of DMru(H). It is clear that,
defining

V ∨ V := {V (·)V ∗ ∈ L(H) : V ∈ V}, (5.3)

the semigroup DMru(V) is nothing but the convex hull of the set V ∨ V:

DMru(V) = co(V ∨ V). (5.4)

Lemma 5.1. For every subgroup V of U(H), the semigroup DMru(V) is a compact convex
subset of L(H) that coincides with the set DMru(V). Thus, in particular, the semigroup
DMru(H) is a compact convex subset of L(H).

Proof. Note that the map

U(H) � V �→ V (·)V ∗ ∈ L(H) (5.5)

is continuous. Hence, the image, through this map, of the closed subgroup V of U(H)—
i.e. V ∨ V—is a compact subset K of L(H). Recall that, in a finite-dimensional (real or
complex) vector space, the convex hull of a compact set of is compact, and the closure
of the convex hull of a bounded set coincides with the convex hull of the closure of this
set. Then, DMru(V) = co(V ∨ V) is a compact subset of L(H). Moreover, co(V ∨ V)

coincides with the closure co(V ∨ V) = DMru(V) of co(V ∨ V). Indeed, V ∨ V = V ∨ V
(as the map (5.5) is continuous, V ∨ V ⊂ V ∨ V and V ∨ V = V ∨ V ⊃ V ∨ V); hence
co(V ∨ V) = co(V ∨ V) = co(V ∨ V). �

Definition 5.2. A random unitary semigroup acting in B(H) is a quantum dynamical
semigroup taking values in the semigroup DMru(H).

Proposition 5.1. Every twirling superoperator in B(H) is a random unitary map. Therefore,
every twirling semigroup acting in B(H) is a random unitary semigroup.

Proof. Expression (4.15) of a twirling superoperator involves an integral that, in the case
where H is finite dimensional, can be considered to be defined with respect to the topology of
L(H). Thus, taking into account remark 5.1, from lemma 5.1 the statement follows. �

A quantum dynamical semigroup {Qt : B(H) → B(H)}t∈R+ is completely characterized
by its (in this case, of course, bounded) infinitesimal generator L:

L = lim
t↓0

t−1(Qt − I ). (5.6)

According to the Gorini–Kossakowski–Lindblad–Sudarshan classification theorem [12, 13],
L has the general form

L Â = −i[Ĥ , Â] + F Â − 1
2 ((F∗I )Â + Â(F∗I )), (5.7)
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where Ĥ is a traceless self-adjoint operator in H, F : B(H) → B(H) a completely positive
map and F∗ its adjoint with respect to the Hilbert–Schmidt scalar product in B(H).

Remark 5.2. As is well known [21], a completely positive map K : B(H) → B(H) can be
expressed in the Kraus–Stinespring–Sudarshan canonical form:

K(Â) =
N2∑

k=1

γk K̂k Â K̂∗
k , γk � 0, Â ∈ B(H), (5.8)

where K̂1 , . . . , K̂
N2 are linear operators in H such that

〈K̂j , K̂k 〉HS := tr(K̂∗
j K̂k ) = δjk, j, k = 1, . . . , N2. (5.9)

However, it can be easily shown that the completely positive map F in formula (5.7) can be
assumed, without loss of generality, to be of the form

F Â =
N2−1∑
k=1

γk F̂k Â F̂ ∗
k , γk � 0,

(
F∗Â =

N2−1∑
k=1

γk F̂ ∗
k Â F̂k

)
, (5.10)

where the N2 − 1 linear operators F̂1 , . . . , F̂
N2−1 form an orthonormal basis—with respect

to the Hilbert–Schmidt scalar product 〈·, ·〉HS—in the orthogonal complement of the one-
dimensional subspace of B(H) generated by the identity operator (thus, they are traceless). In
this way, formula (5.7) gives the so-called diagonal form[11] of the infinitesimal generator L.

Later on, we will prove a generalization of a classical result of Kümmerer and Maassen
[17]; see theorem 5.1 below. As a first step, from [17] we can extract some useful information
on random unitary semigroups. Given a subgroup V of the group U(H), we will denote by
C(V) the closure of the convex cone in L(H) generated by the set V ∨ V − I , namely

C(V) := co-cone({(V (·)V ∗ − I ) ∈ L(H) : V ∈ V}). (5.11)

In particular, we will adopt the shorthand notation C(H) ≡ C(U(H)).

Proposition 5.2. The following facts are equivalent.

(a) The quantum dynamical semigroup {Qt : B(H) → B(H)}t∈R+ is a random unitary
semigroup.

(b) The infinitesimal generator of the quantum dynamical semigroup {Qt : B(H) →
B(H)}t∈R+ belongs to the closed convex cone C(H).

(c) The infinitesimal generator L of the quantum dynamical semigroup {Qt : B(H) →
B(H)}t∈R+ is of the form (5.7), with the completely positive map F : B(H) → B(H) of
the form

F Â =
K∑

k=1

Êk Â Êk + γ0UÂ, Êk ∈ BR(H), γ0 � 0, U ∈ DMru(H)

(5.12)

for all Â ∈ B(H).
(d) The infinitesimal generator L of the quantum dynamical semigroup {Qt : B(H) →

B(H)}t∈R+ is of the form

L Â = −i[Ĥ , Â] +
N2−1∑
k=1

γk

(
L̂kÂ L̂k − 1

2

(
L̂2

kÂ + Â L̂2
k

))
+ γ0(U − I )Â, Â ∈ B(H),

(5.13)
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where Ĥ is a traceless self-adjoint operator, L̂1, . . . , L̂N2−1 are the traceless self-adjoint
operators such that

〈L̂j , L̂k〉HS = δjk, j, k = 1, . . . , N2 − 1, (5.14)

U is a random unitary map acting in B(H) and γ0, . . . , γN2−1 are non-negative numbers.

Proof. The equivalence of (a), (b) and (c) is proved in [17] (see theorem 1.1.1.; here we
have only adapted terminology and results to our context). The equivalence of (c) and (d)
is straightforward. Hint: in order to get (d) from (c), expand the self-adjoint operators
{Êk}Kk=1—Êk = ∑N2−1

l=0 cklF̂l —with respect to an orthonormal basis {F̂l}N2−1
l=0 in BR(H)

(〈F̂j , F̂l〉HS = δjl), with F̂0 = I ; then, diagonalize the positive real matrix [Mlm]N
2−1

l,m=1, where
Mlm = ∑K

k=1 cklckm, by means of an orthogonal transformation, and next use the orthogonal
matrix involved in this transformation for defining a new orthonormal basis in the subspace of
BR(H) formed by traceless operators. �

For reasons that will be clear later on, it is convenient to single out a special class of
random unitary semigroups, namely the Gaussian dynamical semigroups.

Definition 5.3. We will say that a quantum dynamical semigroup {Qt }t∈R+ acting in B(H) is
a Gaussian dynamical semigroup if its infinitesimal generator G can be expressed in the form

G Â = −i[Ĥ , Â] +
N2−1∑
k=1

γk

(
F̂k Â F̂k − 1

2

(
F̂ 2

k Â + Â F̂ 2
k

))
, (5.15)

where Ĥ is a traceless self-adjoint operator, F̂1 , . . . , F̂
N2−1 are traceless self-adjoint operators

satisfying (5.14) and

γ1 � 0, . . . , γN2−1 � 0, γ1γ2 · · · γN2−1 �= 0. (5.16)

Otherwise stated, the infinitesimal generator L of formula (5.7) gives rise to a Gaussian
dynamical semigroup if the completely positive map F admits a decomposition of the form
(5.10) where the linear operators F̂1 , . . . , F̂

N2−1 are—in addition to the previously mentioned
assumptions—self-adjoint, and there is at least a nonzero number in the set {γ1, . . . , γN2−1}.
Note that, according to proposition 5.2, every Gaussian dynamical semigroup is a random
unitary semigroup. We will show, moreover, that every Gaussian dynamical semigroup arises
in a natural way as a twirling semigroup associated with a convolution semigroup of measures
of a certain type, namely, with a ‘Gaussian semigroup of measures’.

In order to define such a class of convolution semigroups of measures, let us consider the
following set of probability measures on the Lie group G:

D(G) := {δg : g ∈ G} ⊂ M1(G), (5.17)

i.e. D(G) is the set of all Dirac measures on G.

Definition 5.4. A continuous convolution semigroup of measures {μt }t∈R+ —such that, for
t > 0, μt ∈ M1(G)\D(G)—is called a Gaussian (convolution) semigroup of measures if

lim
t↓0

t−1μt(�Ee) = 0 (5.18)

for every Borel neighborhood of the identity Ee in G.

The previous definition is originally due to Courrège [41] and Siebert [42]. Gaussian
semigroups of measures on G describe the statistical properties of Brownian motion on G [5].

19



J. Phys. A: Math. Theor. 43 (2010) 265301 P Aniello et al

We have already encountered condition (5.18)—see (3.2)—in the case where G = R
n. Thus,

the reader should be familiar with its consequences. In general, it is a well-known fact—
see [5]—that, given a Gaussian semigroup of measures {μt }t∈R+ on G, for every t ∈ R

+

the measure μt has support contained in the connected component with the identity of G:
supp(μt ) ⊂ Ge. Therefore, in the following we can assume without loss of generality that—
as far as a Gaussian semigroup of measures is concerned—the group G is connected. It is
a remarkable result—see, again, [5]—the representation kit {bj , ajk, η}nj,k=1 of a continuous
convolution semigroup of measures on G corresponds to a Gaussian semigroup of measures
if and only if

η = 0 and [ajk]nj,k=1 �= 0. (5.19)

This result implies, in particular, that Gaussian semigroups of measures do exist; precisely,
one for each set {bj , ajk}nj,k=1, where [ajk]nj,k=1 is a non-zero positive matrix. Note, moreover,
that the Lévy–Kintchine formula (2.20) holds, in this case, with R = 0, i.e.

(Jf )(g) =
n∑

j=1

bj (ξjf )(g) +
n∑

j,k=1

ajk(ξj ξkf )(g), f ∈ C2
c(G). (5.20)

Note, moreover, that Gaussian semigroups of measures on G form a special class among the
convolution semigroups of measures of the first kind on G (see section 2).

At this point, in order to get to the main result of this section (theorem 5.1 below),
we need to pass through four technical lemmas. We will denote by {μt }t∈R+ an arbitrary
continuous convolution semigroup of measures on G, with representation kit {bj , ajk, η}nj,k=1,
and by L(U, {μt }) the infinitesimal generator of the twirling semigroup associated with the
pair (U, {μt }t∈R+).

Lemma 5.2. Let ϕ : G → C be a bounded Borel function, which vanishes on a Borel
neighborhood of the identity of G. Then, for every sequence {τm}m∈N in R

+
∗ converging to zero,

there is a subsequence {tk ≡ τmk
}k∈N such that the limit

lim
k→∞

1

tk

∫
G

ϕ(g) dμtk (g) (5.21)

exists in C.

Proof. According to a well-known result—see [5], lemma 4.1.4—for every Borel
neighborhood of the identity Ee in G, we have

sup
t∈R+∗

t−1μt(�Ee) < ∞. (5.22)

Thus, if ϕ : G → C is a bounded Borel function vanishing on Ee, we have

sup
t∈R+∗

t−1

∣∣∣∣
∫

G

ϕ(g) dμt(g)

∣∣∣∣ � sup
t∈R+∗

t−1
∫

�Ee

|ϕ(g)| dμt(g) � sup
g∈G

|ϕ(g)| sup
t∈R+∗

t−1μt(�Ee) < ∞.

(5.23)

Now, take any sequence {τm}m∈N in R
+
∗ converging to zero. Relation (5.23) implies that

sup
m∈N

1

τm

∣∣∣∣
∫

G

ϕ(g) dμτm
(g)

∣∣∣∣ < ∞. (5.24)

Then, by the Bolzano–Weierstrass theorem, there is a subsequence {tk ≡ τmk
}k∈N ⊂ R

+
∗ of

{τm}m∈N such that the limit (5.21) exists in C. The proof is complete. �
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The previous lemma will allow us to prove the following result, which will be fundamental
for our purposes.

Lemma 5.3. If f : G → C is a bounded smooth function such that the limit

lim
t↓0

1

t

(∫
G

f (g) dμt(g) − f (e)

)
(5.25)

exists in C, then this limit is equal to

n∑
j=1

bj (ξjf )(e) +
n∑

j,k=1

ajk(ξj ξkf )(e) +
∫

G∗

(
f (g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)

)
dη(g).

(5.26)

Therefore, in the case where the convolution semigroup of measures {μt }t∈R+ is of the first kind
(i.e. the associated Lévy measure η on G∗ is finite), the limit (5.25)—if it exists—is given by

n∑
j=1

(bj + cj (η))(ξjf )(e) +
n∑

j,k=1

ajk(ξj ξkf )(e) +
∫

G∗
f (g) dη(g) − η(G∗) f (e), (5.27)

where

cj (η) := −
∫

G∗
x̄j (g) dη(g), j = 1, . . . , n. (5.28)

Proof. Since G (being locally compact and second countable) is σ -compact, there exists a
sequence {βm}m∈N of non-negative smooth functions on G characterized as follows:

(i) for every m ∈ N, βm belongs to C∞
c (G; R) and βm(G) ⊂ [0, 1];

(ii) there is a sequence {K◦
m}m∈N of precompact open subsets of G such that

e ∈ K◦
1, K◦

1 ⊂ K◦
2 ⊂ · · · , ∪∞

m=1K◦
m = G, (5.29)

βm(g) = 1, ∀ g ∈ Km, (5.30)

where Km is the closure of the set K◦
m: Km = K◦

m; we can assume that

K◦
1 ⊃ supp(x̄1) ∪ · · · ∪ supp(x̄n); (5.31)

(iii) there is a sequence {Om}m∈N of precompact open subsets of G such that for every m ∈ N,

Om ⊃ Km (5.32)

and

βm(g) = 0, ∀ g ∈ �Om. (5.33)

In fact, as G is σ -compact, there exist sequences {K◦
m}m∈N, {Om}m∈N of precompact open

subsets of G satisfying (5.29) and (5.32), respectively; relation (5.31) can always be satisfied
by the compactness of the supports of the adapted coordinates. Next, by a standard procedure
in the theory of smooth manifolds one constructs suitable ‘bump functions’ {βm}m∈N, contained
in C∞

c (G; R), satisfying (5.30) and (5.33).
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By the existence of the limit (5.25), applying lemma 5.2 to the bounded smooth function
f (1 − β1) (which vanishes on the compact neighborhood K1 of e), for some sequence {tk}k∈N

in R
+
∗ converging to zero we have

lim
t↓0

1

t

(∫
G

f (g) dμt(g) − f (e)

)
= lim

k→∞
1

tk

(∫
G

f (g) dμtk (g) − f (e)

)

= lim
k→∞

1

tk

(∫
G

f (g)β1(g) dμtk (g) − f (e)

)

+ lim
k→∞

1

tk

∫
G

f (g) (1 − β1(g)) dμtk (g), (5.34)

where, since the function fβ1 belongs to C∞
c (G; C) and β1(e) = 1, the first limit in the last

member of (5.34) exists and is equal to (J(fβ1))(e), with J denoting the generator of the
probability semigroup associated with {μt }t∈R+ . We stress that the sequence {tk}k∈N can be
extracted, as a subsequence, from any sequence of strictly positive numbers converging to
zero. Thus, we find that

lim
t↓0

1

t

(∫
G

f (g) dμt(g) − f (e)

)
= (J(fβ1))(e) + lim

k→∞
1

tk

∫
G

f (g) (1 − β1(g)) dμtk (g),

(5.35)

where, by virtue of the Lévy–Kintchine formula applied to the function fβ1 ∈ C∞
c (G; C)

(note that (fβ1)(g) = f (g), for g ∈ K◦
1), we can write

(J(fβ1))(e) =
n∑

j=1

bj (ξjf )(e) +
n∑

j,k=1

ajk(ξj ξkf )(e)

+
∫

G∗

(
(fβ1)(g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)

)
dη(g). (5.36)

At this point, in order to evaluate the last term in (5.36), it will be convenient to set

ϕ1,1(g) ≡ f (g)β1(g), and, for m ∈ N, m � 2,

ϕ1,1(g) = ϕm,1(g) + ϕm,2(g), ϕm,1(g) := f (g)βm(g),

ϕm,2(g) := f (g) (β1(g) − βm(g)).

(5.37)

Clearly, the functions {ϕm,1}m�1 belong to C∞
c (G; C). It is easy to check that the functions

{ϕm,2}m�2 belong to C∞
c (G; C), as well. Indeed, they are obviously smooth and

supp(β1 − βm) ⊂ �K1 ∩ (O1 ∪ Om) ⊂ �K1 ∩ (O1 ∪ Om) = �K1 ∩ (O1 ∪ Om). (5.38)

Thus, the set supp(β1 − βm) is compact in G. Note that, as it does not contain the identity, it
is a compact set in G∗, as well; hence {ϕm,2}m�2 ⊂ C∞

c (G∗; C). This fact allows us to use
formula (2.22) in such a way to decompose the last term in (5.36) as follows:
∫

G∗

(
ϕ1,1(g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)

)
dη(g)

=
∫

G∗

(
ϕm,1(g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)

)
dη(g)

+ lim
k→∞

1

tk

∫
G

ϕm,2(g) dμtk (g) ≡ �, m � 2. (5.39)
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Note that the number � does not depend on the index m. At this point, considering the last
term in (5.35), for every m � 2 we have

� + lim
k→∞

1

tk

∫
G

f (g) (1 − β1(g)) dμtk (g)=
∫

G∗

(
ϕm,1(g) − f (e) −

n∑
j=1

(
ξjf

)
(e)x̄j (g)

)
dη(g)

+ lim
k→∞

1

tk

∫
G

f (g) (1 − βm(g)) dμtk (g). (5.40)

The rhs of relation (5.40) can be regarded as the (constant) sum of two sequences labeled
by the index m. Therefore, if one of the two sequences is converging, the other one must
converge too. Let us prove that the limit

lim
m→∞

∫
G∗

(
ϕm,1(g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)

)
dη(g) (5.41)

exists and is equal to
∫

G∗

(
f (g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)

)
dη(g). (5.42)

Indeed—observing that, by (5.31), x̄j (g) = x̄j (g)βm(g), and denoting by χ�Km
the

characteristic function of the set �Km—we can write the estimate
∣∣∣∣ϕm,1(g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)

∣∣∣∣

=
∣∣∣∣f (g)βm(g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)βm(g)

∣∣∣∣

�
∣∣∣∣f (g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)

∣∣∣∣βm(g) + |f (e)|(1 − βm(g))

�
∣∣∣∣f (g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)

∣∣∣∣ + |f (e)|χ�Km
(g) (5.43)

for all m ∈ N and g ∈ G. Therefore, since χ�Km
� χ�K1

, we find out that

∣∣∣∣ϕm,1(g) − f (e) −
n∑

j=1

(ξjf )(e)x̄j (g)

∣∣∣∣

�
∣∣∣∣f (g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)

∣∣∣∣ + |f (e)|χ�K1
(g). (5.44)

The expression on the rhs of (5.44) defines a function contained in L1(G∗, η; C). Therefore,
since limm→∞ βm(g) = 1, for all g ∈ G, by the ‘dominated convergence theorem’ the limit
(5.41) exists and is equal to (5.42), as claimed.

Let us resume what we have obtained up to this point. By relations (5.35), (5.36), (5.39)
and (5.40), and by the fact that the limit (5.41) is equal to (5.42), we conclude that the existence
of the limit (5.25), for a bounded smooth function f : G → C, implies that this limit must
coincide with
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n∑
j=1

bj (ξjf )(e) +
n∑

j,k=1

ajk(ξj ξkf )(e) +
∫

G∗

(
f (g) − f (e) −

n∑
j=1

(ξjf )(e)x̄j (g)

)
dη(g)

+ lim
m→∞ lim

k→∞
1

tk

∫
G

f (g) (1 − βm(g)) dμtk (g), (5.45)

for some sequence {tk}k∈N in R
+
∗ converging to zero that can be extracted, as a subsequence,

from any sequence of strictly positive numbers converging to zero. Note that the iterated limit
above must exist (as the first member of (5.40) does not depend on m and the limit (5.41)
exists).

We now apply this result to the function f ≡ 1. Then, we find immediately that

lim
m→∞ lim

k→∞
1

τk

∫
G

(1 − βm(g)) dμτk
(g) = 0, (5.46)

for some sequence {τk}k∈N in R
+
∗ converging to zero.

Finally, considering again an arbitrary bounded smooth function f on G for which the
limit (5.25) exists, extract from {τk}k∈N a subsequence {tk}k∈N such that this limit coincides
with (5.45). From (5.46)—observing that the inequality∣∣∣∣

∫
G

f (g) (1 − βm(g)) dμtk (g)

∣∣∣∣ � ‖f ‖sup

∫
G

(1 − βm(g)) dμtk (g) (5.47)

implies∣∣∣∣ lim
m→∞ lim

k→∞
1

tk

∫
G

f (g) (1 − βm(g)) dμtk (g)

∣∣∣∣ = lim
m→∞ lim

k→∞
1

tk

∣∣∣∣
∫

G

f (g) (1 − βm(g)) dμtk (g)

∣∣∣∣
� ‖f ‖sup lim

m→∞ lim
k→∞

1

tk

∫
G

(1 − βm(g)) dμtk (g) (5.48)

—we conclude that the last term in (5.45) vanishes and the proof is complete. �

The next lemma will lead us very close to the main result of this section.

Lemma 5.4. With the previous notations and assumptions, for every operator Â ∈ B(H), the
following relation holds:

L(U, {μt })Â = lim
t↓0

1

t

( ∫
G

dμt(g) U(g)ÂU(g)∗ − Â

)

=
n∑

j=1

bj [X̂j , Â] +
n∑

j,k=1

ajk({X̂j X̂k, Â} − 2X̂j Â X̂k)

+
∫

G∗

(
U(g)ÂU(g)∗ − Â −

n∑
j=1

x̄j (g)[X̂j , Â]

)
dη(g) ≡ Â′, (5.49)

where {·, ·} is the anti-commutator and the set {X̂1, . . . , X̂n} ⊂ iBR(H) is the n-tuple of
operators defined by (2.16). Suppose, in particular, that {μt }t∈R+ is a convolution semigroup
of measures of the first kind. Then, for every Â ∈ B(H), we have

lim
t↓0

1

t

( ∫
G

dμt(g) U(g)ÂU(g)∗ − Â

)
=

n∑
j=1

(bj + cj (η))[X̂j , Â]

+
n∑

j,k=1

ajk({X̂j X̂k, Â} − 2X̂j Â X̂k) + η(G∗)
(
UU

η − I
)
Â, (5.50)
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where {cj (η)}nj=1 are the real numbers defined by (5.28), and UU
η : B(H) → B(H) is identically

zero for η = 0 and a random unitary map for η �= 0, with

UU
η = η(G∗)−1

∫
G∗

dη(g) U ∨ U(g), η �= 0. (5.51)

Proof. It is sufficient to show that

〈φ, (L(U, {μt })Â)ψ〉 = lim
t↓0

1

t

( ∫
G

dμt(g) 〈φ,U(g)Â U(g)∗ψ〉 − 〈φ, Âψ〉
)

= 〈φ, Â′ψ〉 (5.52)

for arbitrary Â ∈ B(H) and φ,ψ ∈ H, where Â′ is the shorthand notation introduced in (5.49).
To this aim, since the limit in (5.52) exists, we can apply lemma 5.3 to the bounded smooth
function f : G → C defined by

f (g) := 〈φ,U(g)Â U(g)∗ψ〉. (5.53)

Using the notation introduced in section 2, there exists a neighborhood of the identity Ee in G
such that

U(g) = ex̄1(g)X̂1+···+x̄n(g)X̂n , ∀ g ∈ Ee. (5.54)

Therefore, we have that

ξj 〈φ,U(g)Â U(g)∗ψ〉|g=e = 〈φ, [X̂j , Â]ψ〉, (5.55)

ξj ξk 〈φ,U(g)Â U(g)∗ψ〉|g=e = 〈φ, (X̂j X̂kÂ + Â X̂kX̂j − X̂j Â X̂k − X̂kÂ X̂j )ψ〉. (5.56)

Now, exploiting formula (5.26) and the fact that the matrix [ajk]nj,k=1 is symmetric, we obtain
immediately relation (5.52). �

The last technical lemma will establish a useful link between the generator of the twirling
semigroup associated with the pair (U, {μt }t∈R+)—with {μt }t∈R+ denoting a generic continuous
convolution semigroup of measures on G—and the convolution semigroups of measures on G
of the first kind.

Lemma 5.5. There exists a sequence {{μt;m}t∈R+ : m ∈ N} of continuous convolution
semigroups of measures of the first kind on G—with {μt;m}t∈R+ having a representation kit of
the form {bj , ajk, ηm}nj,k=1—such that

lim
m→∞ L(U, {μt;m}) = L(U, {μt }), and lim

m→∞

∫
G∗

f (g) dηm(g) =
∫

G∗
f (g) dη(g),

(5.57)

for every bounded Borel function f : G∗ → C belonging to L1(G∗, η; C).

Proof. Let {bj , ajk, η}nj,k=1 denote, as usual, the representation kit of the convolution
semigroup of measures {μt }t∈R+ , and let  : G → R

+ be a Hunt function and ′ its restriction
to G∗. For every m ∈ N, consider the measure ηm on G∗ determined by

dηm(g) = (1 − exp(−m′(g))) dη(g), g ∈ G∗. (5.58)

The measure ηm is finite (by construction), for all m ∈ N, and, as 0 � (1−exp(−m′(g))) � 1,
by the ‘dominated convergence theorem’ we have that

lim
m→∞

∫
G∗

f (g) dηm(g) =
∫

G∗
f (g) dη(g), (5.59)
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for every bounded Borel function f : G∗ → C contained in L1(G∗, η; C). Denote
by {μt;m}t∈R+ the continuous convolution semigroup of measures with representation kit
{bj , ajk, ηm}nj,k=1. From relations (5.49) and (5.59)—setting f (g) = 〈

φ,U(g)Â U(g)∗ − Â−∑n
j=1 x̄j (g)[X̂j , Â]ψ

〉
, g ∈ G∗, for any Â ∈ B(H) and φ,ψ ∈ H—we obtain that

lim
m→∞ L(U, {μt;m}) = L(U, {μt }). (5.60)

The proof is complete. �

Having completed the main technical proofs, we are finally ready to focus on the main
result of this section, which can be regarded as a generalization of an already cited classical
result of Kümmerer and Maassen [17]. The latter result is obtained from the former (namely
theorem 5.1 below) by choosing the unitary representation U as the defining representation
of SU(N) (up to unitary equivalence). It will be now convenient to establish a few additional
notations. Given a nonempty subset S of U(H), we will denote by cone(S) the cone in L(H)

generated by this set—i.e. cone(S) := R
+S —and by cone(S) the closure of such cone. If

0 ∈ S, consider, moreover, the set

cone0(S) := {A ∈ L(H) : ∃{αm}m∈N ⊂ R
+
∗, αm → ∞, ∃{Am}m∈N ⊂ S s.t. αmAm → A}.

(5.61)

It can be shown that if S is a closed set, then cone0(S) is a closed cone (see [43], where a
closed subset of a normed vector space is considered). Denoting, as above, by V a subgroup
of U(H) and by V the subgroup of U(H) which is the closure of V , the sets cone(V ∨ V − I )

and C(V) := co-cone(V ∨ V − I ) are characterized as follows.

Proposition 5.3. For the closed convex cone C(V) := co-cone(V ∨ V − I ) we have

C(V) = co-cone(V ∨ V − I ) = co-cone(DMru(V) − I ) = co-cone(DMru(V) − I ). (5.62)

The set cone0(V ∨ V − I ) is a closed cone in L(H). The closed cone cone(V ∨ V − I ) is
contained in C(V) and

cone(V ∨ V − I ) = cone0(V ∨ V − I ) ∪ cone(V ∨ V − I ). (5.63)

Proof. The proof of relations (5.62) goes as follows. First observe that

C(V) := co-cone(V ∨ V − I ) = co-cone(V ∨ V − I ) = co-cone(V ∨ V − I ). (5.64)

Next, we have

co-cone(V ∨ V − I ) = co-cone(co(V ∨ V − I ))

= co-cone(DMru(V) − I ) = co-cone(DMru(V) − I ) = co-cone(DMru(V) − I ).

(5.65)

Thus, the proof of (5.62) is complete.
Next, since V ∨ V − I is a closed set, cone0(V ∨ V − I ) is a closed cone, and from our

previous arguments it is clear that the closed cone cone(V ∨ V − I ) is contained in C(V). Let
us prove relation (5.63). For every compact subset K of L(H) such that 0 ∈ K, the following
decomposition holds: cone(K) = cone0(K) + cone(K) (see [43], theorem 3.2, and take into
account the fact that the ‘asymptotic cone’—or ‘recession cone’—generated by a bounded
set coincides with the origin). Apply this result to the compact set V ∨ V − I . The proof is
complete. �

In the following, the subgroups V and V of U(H) will be identified with the subgroups
U(G) and U(G), respectively. Let VU be the real vector space obtained by projecting
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i(Ran(πU))—regarded as a vector subspace of BR(H)—onto the orthogonal complement of
the one-dimensional space spanned by the identity, namely

VU := {Â ∈ BR(H) : Â = i(πU(ξ) − N−1 tr(πU(ξ))I ), ξ ∈ Lie(G)}. (5.66)

We will denote by D the dimension of the vector space VU (D � min{n, N−1}). Observe that, if
G is a semisimple Lie group, then [Lie(G), Lie(G)] = Lie(G) and VU = i(Ran(πU)). Finally,
in the case where {μt }t∈R+ is of regular type, the adapted coordinates {g �→ x̄1(g), . . . , g �→
x̄n(g)} are integrable with respect to the Lévy measure η and we can set

cj (η) := −
∫

G∗
x̄j (g) dη(g), j = 1, . . . , n. (5.67)

Theorem 5.1. Let G be a Lie group and U a smooth unitary representation of G in the
Hilbert space H. Then, for every continuous convolution semigroup of measures {μt }t∈R+

on G—let {bj , ajk, η}nj,k=1 be the associated representation kit—the infinitesimal generator
L(U, {μt }) : B(H) → B(H) of the twirling semigroup {St }t∈R+ associated with the pair
({μt }t∈R+ , U) is of the form

L(U, {μt }) = G(U, {μt }) + W(U, {μt }), (5.68)

where G(U, {μt }) and W(U, {μt }) belong to the closed convex cone C(U(G)) ⊂ C(H) ⊂
L(H) and are given by

G(U, {μt }) :=
n∑

j=1

bj [X̂j , (·)] +
n∑

j,k=1

ajk({X̂j X̂k, (·)} − 2X̂j (·) X̂k), (5.69)

W(U, {μt }) :=
∫

G∗

(
U ∨ U(g) − I −

n∑
j=1

x̄j (g)[X̂j , (·)]
)

dη(g), (5.70)

with X̂1, . . . , X̂n the skew-adjoint operators defined by (2.16). In the case where the semigroup
of measures {μt }t∈R+ is of the first kind, we have

W(U, {μt }) = η(G∗)
(
UU

η − I
)

+
n∑

j=1

cj (η)[X̂j , (·)], (5.71)

with UU
η : B(H) → B(H) identically zero, for η = 0, and

UU
η := η(G∗)−1

∫
G∗

U ∨ U(g) dη(g) ∈ DMru(U(G)), for η �= 0. (5.72)

Suppose, instead, that the semigroup of measures {μt }t∈R+ is of the second kind. Then, there
exists a sequence {{μt;m}t∈R+ : m ∈ N} of continuous convolution semigroups of measures
of the first kind on G—with {μt;m}t∈R+ having a representation kit of the form
{bj , ajk, ηm}nj,k=1—such that limm→∞ L(U, {μt;m}) = L(U, {μt }), and limm→∞

∫
G∗

f (g) dηm(g) = ∫
G∗

f (g) dη(g), for every bounded Borel function f : G∗ → C belonging to

L1(G∗, η; C). Moreover, we have that

W(U, {μt }) = lim
m→∞

(
ηm(G∗)

(
UU

ηm
− I

)
+

n∑
j=1

cj (ηm)[X̂j , (·)]
)

, (5.73)

and, in the case where {μt }t∈R+ is of regular type,

W(U, {μt }) = W0(U, {μt }) +
n∑

j=1

cj (η)[X̂j , (·)], (5.74)
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with W0(U, {μt }) denoting the element of the closed convex cone C(U(G)) determined by

W0(U, {μt }) = lim
m→∞ ηm(G∗)

(
UU

ηm
− I

)
. (5.75)

The superoperator defined by (5.69) can be expressed in the canonical form

G(U, {μt }) = −i[Ĥ , (·)] +
D∑

k=1

γk

(
F̂k (·) F̂k − 1

2

(
F̂ 2

k (·) + (·) F̂ 2
k

))
, γk � 0, (5.76)

with Ĥ , F̂1 , . . . , F̂D traceless self-adjoint operators in H satisfying

Ĥ , F̂1 , . . . , F̂D ⊂ VU , 〈F̂j , F̂k 〉HS = δjk, j, k = 1, . . . , D. (5.77)

In particular, if {μt }t∈R+ is a Gaussian semigroup of measures, then W(U, {μt }) = 0 and
G(U, {μt }) is of the form (5.15), i.e. {St }t∈R+ is a Gaussian dynamical semigroup. Finally, for
every superoperator L : B(H) → B(H) of the form L = G+γ0(U−I )—with G of the general
form given by the rhs of (5.76), U belonging to DMru(U(G)) and γ0 � 0—there is a continuous
convolution semigroup of measures {μt }t∈R+ on G—with associated Lévy measure identically
zero, if γ0(U−I ) = 0—such that the infinitesimal generator of the twirling semigroup {St }t∈R+

induced by the pair ({μt }t∈R+ , U) is L.

Proof. By lemma 5.4, the infinitesimal generator L(U, {μt }) is of the form (5.68). In
particular, in the case where the semigroup of measures {μt }t∈R+ is of the first kind, the
superoperator W(U, {μt }) is of the form (5.71). By lemma 5.5, in the case where the semigroup
of measures {μt }t∈R+ is of the second kind, there exists a sequence {{μt;m}t∈R+ : m ∈ N} of
continuous convolution semigroups of measures of the first kind on G—with {μt;m}t∈R+ having
a representation kit of the form {bj , ajk, ηm}nj,k=1—such that

lim
m→∞ L(U, {μt;m}) = L(U, {μt }), and lim

m→∞

∫
G∗

f (g) dηm(g) =
∫

G∗
f (g) dη(g),

(5.78)

for every bounded Borel function f : G∗ → C belonging to L1(G∗, η; C). It follows that
(5.73)—and, in the case where {μt }t∈R+ is of regular type, as limm→∞ cj (ηm) = cj (η),
(5.74)—hold true.

Let us prove that the superoperators G(U, {μt }) and W(U, {μt }) of decomposition (5.68)
belong to the convex cone C(U(G)). Indeed, diagonalizing the positive matrix [ajk]nj,k=1 and
introducing a suitable new basis {υ1, . . . , υn} in Lie(G), we can write G(U, {μt }) in the form

G(U, {μt }) := [Ŷ0, (·)] +
n∑

j=1

λj ({Ŷj Ŷj , (·)} − 2Ŷj (·) Ŷj ), λj � 0, (5.79)

where Ŷ0 ∈ Ran(πU), Ŷ0 = πU(υ0) (for some υ0 ∈ Lie(G)), and Ŷ1 = πU(υ1), . . . , Ŷn =
πU(υn) are skew-adjoint operators in H. For the superoperator [Ŷ0, (·)] we have

[Ŷ0, (·)] = d

dt
(et Ŷ0(·) e−t Ŷ0)|t=0 = lim

t↓0
t−1(et Ŷ0(·) e−t Ŷ0 − (·)), e±t Ŷ0 = U(expG(±tυ0)).

(5.80)

Therefore, [Ŷ0, (·)] belongs to C(U(G)). Analogously, since e±t Ŷj = U(expG(±tυj )), we
have that

{Ŷj Ŷj , (·)} − 2Ŷj (·) Ŷj = 1

2
[Ŷj ,

[
Ŷj , (·)]]

= 1

2

d2

dt2
(et Ŷj (·)e−t Ŷj )

∣∣∣
t=0

= lim
t↓0

1

2t2
((et Ŷj (·)e−t Ŷj − (·)) + (e−t Ŷj (·) et Ŷj − (·))) ∈ C(U(G)). (5.81)
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Hence, G(U, {μt }) is a convex combination of elements of the closed convex cone C(U(G)).
By a similar argument W(U, {μt }) belongs to C(U(G)), as well.

The canonical form (5.76) of the superoperator G(U, {μt }) follows from a direct
calculation (hint: expand the self-adjoint operators iX̂1, . . . , iX̂n with respect to an orthonormal
basis in BR(H) including a multiple of the identity, and exploit the fact that [ajk]nj,k=1 is a
positive symmetric matrix). If {μt }t∈R+ is a Gaussian semigroup of measures, then the
associated Lévy measure is identically zero and [ajk]nj,k=1 �= 0. Therefore, in this case,
W(U, {μt }) = 0 and G(U, {μt }) must be of the form (5.15).

Let us prove the last assertion of the theorem. First, if γ0(U − I ) �= 0, choose a Lévy
measure η (of the first kind) on G∗ as a superposition of point mass measures in such a way
that ∫

G∗
(U ∨ U(g) − I ) dη(g) = γ0(U − I ), (η(G∗) = γ0); (5.82)

otherwise set η = 0. Next, take vectors ζ0, ζ1, . . . , ζD in Lie(G) such that

ζ0 ∈
⎛
⎝π−1

U

( − iP̂ −1
U (Ĥ )

) −
n∑

j=1

cj (η)ξj

⎞
⎠ , ζk ∈ π−1

U

(
iP̂ −1

U (F̂k)
)
, k = 1, . . . , D,

(5.83)

where P̂U is the orthogonal projection (with respect to the Hilbert–Schmidt scalar product) of
BR(H) onto VU . Now, expand the vectors ζ0, ζ1, . . . , ζD with respect to the basis {ξ1, . . . , ξn}
in Lie(G): ζ0 = ∑n

j=1 bj ξj , ζk = ∑n
l=1 dklξl , k = 1, . . . , D. At this point, one can check that

L = G + γ0(U − I ) =
n∑

j=1

bj [X̂j , (·)] +
n∑

j,k=1

ajk({X̂j X̂k, (·)} − 2X̂j (·) X̂k)

+
∫

G∗
(U ∨ U(g) − I ) dη(g) +

n∑
j=1

cj (η)[X̂j , (·)], (5.84)

where [ajk]nj,k=1 is the positive real matrix defined by

ajk := 1

2

D∑
l,m=1

γl δlm dlj dmk. (5.85)

Finally, let {μt }t∈R+ be the continuous convolution semigroup of measures associated with the
representation kit {bj , ajk, η}nj,k=1. From formula (5.84) it follows that L = L(U, {μt }).

The proof is complete. �

Remark 5.3. Given any pair of representation kits {bj , ajk, η}nj,k=1 and {b̃j , ãjk, η̃}nj,k=1 (of
convolution semigroups of measures on G), for all r, r̃ ∈ R

+ one can define the set

r{bj , ajk, η}nj,k=1 + r̃{b̃j , ãjk, η̃}nj,k=1 := {rbj + r̃ b̃j , rajk + r̃ ãjk, rη + r̃ η̃}nj,k=1, (5.86)

which is again the representation kit of a convolution semigroup of measures on G. Then, from
theorem 5.1 it follows that the set

G(U) := {L(U, {μt })
∈ L(H) : {μt }t∈R+ continuous convolution semigroup of measures on G} (5.87)

of all generators of twirling semigroups associated with the representation U is a convex cone
contained in C(V). Note that the convex cone G(U) is not ‘pointed’ (i.e. it is a ‘wedge’), unless
the representation U is trivial. In fact, we have that

G0(U) := G(U) ∩ (−G(U)) = {i[Ĥ , (·)] : Ĥ ∈ VU }. (5.88)
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The set G0(U) is the ‘lineality space’ [44] of the convex cone G(U). It is a vector space
contained in the closed cone cone0(V ∨ V − I ). The lineality space G0(U) is the smallest face
(extreme subset) of the convex cone G(U), namely it is a face of G(U), and any other face of
G(U) contains G0(U). Moreover, the following decomposition holds:

G(U) = G0(U) + G1(U), (5.89)

where G1(U) is the pointed cone defined by G1(U) := {0} ∪ (G(U)\G0(U)).

Recalling the second assertion of proposition 5.1, and applying the last assertion of
theorem 5.1 to the defining representation of the group SU(N), we get the following result.

Corollary 5.1. Let H be a finite-dimensional Hilbert space. Then, every twirling
semigroup acting in B(H) is a random unitary semigroup and, conversely, every random
unitary semigroup acting in B(H) arises as a twirling semigroup.

6. Conclusions, final remarks and perspectives

In this paper, we have studied the main properties of a well-characterized class of semigroups
of (super) operators acting in Banach spaces of trace-class operators. These semigroups of
superoperators—that we have called twirling semigroups—are associated in a natural way
with the pairs of the type (U, {μt }t∈R+), where U is a projective representation of a l.c.s.c.
group G and {μt }t∈R+ is a continuous convolution semigroup of (probability) measures on G.
In section 4, we have proved that the twirling semigroups are quantum dynamical semigroups.
Hence, they describe the dynamics of a class of open quantum systems. It is interesting to note
that every twirling semigroup can be regarded as the restriction to B1(H) of a (continuous)
contraction semigroup in the Hilbert space B2(H), see remark 4.4.

Next, in order to provide a complete characterization of the twirling semigroups, we
have studied their infinitesimal generators. In this paper, as a first step, we have analyzed in
detail the case where G is a Lie group and U is a finite-dimensional, smooth (equivalently,
continuous), unitary representation. However, we stress that, thanks to Nelson’s theory of
analytic vectors [45], one can extend some of the results of section 5 to the case where U
is a generic strongly continuous unitary representation of a Lie group by taking care of the
domains of the (in general, unbounded) infinitesimal generators of the associated twirling
semigroups. This task will be accomplished elsewhere [46].

The main technical tool that we have exploited for proving the main result of section 5—i.e.
theorem 5.1—is the classical Lévy–Kintchine formula, which, in the mathematical literature
[5], is shown to hold for suitable classes of functions ‘vanishing at infinity’—in particular, for
smooth functions with compact support—and is not directly applicable to our context (that
involves, in general, bounded smooth functions on a Lie group G). Indeed, as the reader will
have noticed, it has been necessary to prove lemma 5.3 in order to use the Lévy–Kintchine
formula ‘as if the smooth function G � g �→ 〈φ,U(g)Â U(g)∗ψ〉, Â ∈ B(H) (= B1(H),
H being finite dimensional), φ,ψ ∈ H, belonged to C∞

c (G; C)’, which, in general, is not
the case. Moreover, as the reader may verify, to derive the expression of the infinitesimal
generator of the twirling semigroup associated with the pair (U, {μt }t∈R+) is simpler if one
assumes that {μt }t∈R+ is a Gaussian semigroup of measures (to this aim, one can exploit the
defining condition (5.18)), i.e. if {μt }t∈R+ is the distribution associated with a Brownian motion
on G.

In addition to these technical remarks, it is also worth observing that twirling semigroups
are a natural source of covariant quantum dynamical semigroups. In fact, let {St }t∈R+ be the
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twirling semigroup associated with the pair (U, {μt }t∈R+). Consider the set

G0(U, {μt }) := {g ∈ G : St (U ∨ U(g)Â) = U ∨ U(g)(St Â),∀ t ∈ R
+,∀ Â ∈ B1(H)}.

(6.1)

As the reader may easily check, G0(U, {μt }) is a closed subgroup of G. This subgroup includes
the set

G0(U) := {g ∈ G : U ∨ U(gh) = U ∨ U(hg),∀h ∈ G}, (6.2)

which is a closed normal subgroup of G containing the center of G. For instance, in the case
where U is a projective representation of an Abelian group G, we have

G = G0(U, {μt }) = G0(U). (6.3)

Now, let Ğ be any subgroup of G0(U, {μt }), and let Ŭ : Ğ → U(H) be the projective
representation defined by

Ŭ (g) = U(g), ∀ g ∈ Ğ. (6.4)

Then, we have that

St (Ŭ (g)ÂŬ(g)∗) = Ŭ (g)(St Â)Ŭ (g)∗, ∀ t ∈ R
+, ∀ g ∈ Ğ, ∀ Â ∈ B1(H), (6.5)

namely—by definition, see [14]—the quantum dynamical semigroup {St }t∈R+ is covariant
with respect to the representation Ŭ .

Another issue that is worth discussing is the characterization of the twirling superoperators
that are Markovian channels [47, 48] (we would prefer the term embeddable channels), i.e.
that are members of quantum dynamical semigroups. Precisely, a twirling superoperator
S is a Markovian channel if S = S1, for some quantum dynamical semigroup {St }t∈R+

(not necessarily a twirling semigroup). Clearly, if the twirling superoperator S is induced
by a pair (U,μ) (which is, in general, not unique) such that the probability measure μ

is embeddable—namely μ = μ1 for some continuous convolution semigroup of measures
{μt }t∈R+ (see [5])—then it is a Markovian channel and a member of the twirling semigroup
associated with the pair (U, {μt }t∈R+). However, whether every twirling superoperator which
is a Markovian channel is a member of a twirling semigroup seems to be an interesting
open problem. The investigation of this problem, in the light of known results about the
relation between embeddable and divisible probability measures [5], may also lead to a deeper
understanding of the relation between Markovian and divisible channels [48].

Finally, we note that, if the representation U : G → U(H) is genuinely projective, by
considering a central extension [30] Gext of the circle group T by G one can always represent
any twirling semigroup associated with U as a twirling semigroup associated with a standard
unitary representation of Gext (consider that every convolution semigroup of measures on G
can be trivially extended to Gext).
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